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49. Cross-Section Formulae for Specific Processes

Revised October 2009 by H. Baer (University of Oklahoma) and R.N. Cahn (LBNL).

PART I: STANDARD MODEL PROCESSES

Setting aside leptoproduction (for which, see Sec. 16 of this Review), the cross sections
of primary interest are those with light incident particles, e+e−, γγ, qq, gq , gg, etc.,
where g and q represent gluons and light quarks. The produced particles include both
light particles and heavy ones - t, W , Z, and the Higgs boson H. We provide the
production cross sections calculated within the Standard Model for several such processes.

49.1. Resonance Formation

Resonant cross sections are generally described by the Breit-Wigner formula (Sec. 18
of this Review).

σ(E) =
2J + 1

(2S1 + 1)(2S2 + 1)

4π

k2

[
Γ2/4

(E − E0)2 + Γ2/4

]
BinBout, (49.1)

where E is the c.m. energy, J is the spin of the resonance, and the number of polarization
states of the two incident particles are 2S1 + 1 and 2S2 + 1. The c.m. momentum in
the initial state is k, E0 is the c.m. energy at the resonance, and Γ is the full width at
half maximum height of the resonance. The branching fraction for the resonance into
the initial-state channel is Bin and into the final-state channel is Bout. For a narrow
resonance, the factor in square brackets may be replaced by πΓδ(E − E0)/2.

49.2. Production of light particles

The production of point-like, spin-1/2 fermions in e+e− annihilation through a virtual
photon, e+e− → γ∗ → ff , at c.m. energy squared s is given by

dσ

dΩ
= Nc

α2

4s
β
[
1 + cos2 θ + (1 − β2) sin2 θ

]
Q2

f , (49.2)

where β is v/c for the produced fermions in the c.m., θ is the c.m. scattering angle, and
Qf is the charge of the fermion. The factor Nc is 1 for charged leptons and 3 for quarks.
In the ultrarelativistic limit, β → 1,

σ = NcQ
2
f
4πα2

3s
= NcQ

2
f

86.8 nb

s (GeV2)
. (49.3)

The cross section for the annihilation of a qq pair into a distinct pair q′q′ through
a gluon is completely analogous up to color factors, with the replacement α → αs.
Treating all quarks as massless, averaging over the colors of the initial quarks and defining
t = −s sin2(θ/2), u = −s cos2(θ/2), one finds [1]
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2 49. Cross-section formulae for specific processes

dσ

dΩ
(qq → q′q′) =

α2
s

9s

t2 + u2

s2
. (49.4)

Crossing symmetry gives

dσ

dΩ
(qq′ → qq′) =

α2
s

9s

s2 + u2

t2
. (49.5)

If the quarks q and q′ are identical, we have

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + u2

s2
+

s2 + u2

t2
− 2u2

3st

]
, (49.6)

and by crossing

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + s2

u2
+

s2 + u2

t2
− 2s2

3ut

]
. (49.7)

Annihilation of e+e− into γγ has the cross section

dσ

dΩ
(e+e− → γγ) =

α2

2s

u2 + t2

tu
. (49.8)

The related QCD process also has a triple-gluon coupling. The cross section is

dσ

dΩ
(qq → gg) =

8α2
s

27s
(t2 + u2)

(
1

tu
− 9

4s2

)
. (49.9)

The crossed reactions are

dσ

dΩ
(qg → qg) =

α2
s

9s
(s2 + u2)(− 1

su
+

9

4t2
) (49.10)

and

dσ

dΩ
(gg → qq) =

α2
s

24s
(t2 + u2)(

1

tu
− 9

4s2
) . (49.11)

Finally,

dσ

dΩ
(gg → gg) =

9α2
s

8s
(3 − ut

s2
− su

t2
− st

u2
) . (49.12)

Lepton-quark scattering is analogous (neglecting Z exchange)

dσ

dΩ
(eq → eq) =

α2

2s
e2
q
s2 + u2

t2
. (49.13)
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49. Cross-section formulae for specific processes 3

where eq is the charge of the quark. For neutrino scattering with the four-Fermi
interaction

dσ

dΩ
(νd → ℓ−u) =

G2
F s

4π2
, (49.14)

where the Cabibbo angle suppression is ignored. Similarly

dσ

dΩ
(νu → ℓ−d) =

G2
F s

4π2

(1 + cos θ)2

4
. (49.15)

To obtain the formulae for deep inelastic scattering (presented in more detail in Section
16) we consider quarks of type i carrying a fraction x = Q2/(2Mν) of the nucleon’s
energy, where ν = E −E′ is the energy lost by the lepton in the nucleon rest frame. With
y = ν/E we have the correspondences

1 + cos θ → 2(1 − y) ,

dΩcm → 4πfi(x)dx dy , (49.16)

where the latter incorporates the quark distribution, fi(x). In this way we find

dσ

dx dy
(eN → eX) =

4πα2xs

Q4

1

2

[
1 + (1 − y)2

]

×
[4

9
(u(x) + u(x) + . . .) +

1

9
(d(x) + d(x) + . . .)

]
(49.17)

where now s = 2ME is the cm energy squared for the electron-nucleon collision and we
have suppressed contributions from higher mass quarks.

Similarly,

dσ

dx dy
(νN → ℓ−X) =

G2
F xs

π
[(d(x) + . . .) + (1 − y)2(u(x) + . . .)] (49.18)

and
dσ

dx dy
(νN → ℓ+X) =

G2
F xs

π
[(d(x) + . . .) + (1 − y)2(u(x) + . . .)] . (49.19)

Quasi-elastic neutrino scattering (νµn → µ−p, νµp → µ+n) is directly related to the
crossed reaction, neutron decay. The formula for the differential cross section is presented,
for example, in N.J. Baker et al., Phys. Rev. D23, 2499 (1981).
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4 49. Cross-section formulae for specific processes

49.3. Hadroproduction of heavy quarks

For hadroproduction of heavy quarks Q = c, b, t, it is important to include mass
effects in the formulae. For qq̄ → QQ̄, one has

dσ

dΩ
(qq̄ → QQ̄) =

α2
s

9s3

√

1 −
4m2

Q

s

[
(m2

Q − t)2 + (m2
Q − u)2 + 2m2

Qs
]
, (49.20)

while for gg → QQ̄ one has

dσ

dΩ
(gg → QQ̄) =

α2
s

32s

√

1 −
4m2

Q

s

[
6

s2
(m2

Q − t)(m2
Q − u) −

m2
Q(s − 4m2

Q)

3(m2
Q − t)(m2

Q − u)
+

4

3

(m2
Q − t)(m2

Q − u) − 2m2
Q(m2

Q + t)

(m2
Q − t)2

+
4

3

(m2
Q − t)(m2

Q − u) − 2m2
Q(m2

Q + u)

(m2
Q − u)2

−3
(m2

Q − t)(m2
Q − u) + m2

Q(u − t)

s(m2
Q − t)

−3
(m2

Q − t)(m2
Q − u) + m2

Q(t − u)

s(m2
Q − u)

]

. (49.21)

49.4. Production of Weak Gauge Bosons

49.4.1. W and Z resonant production :

Resonant production of a single W or Z is governed by the partial widths

Γ(W → ℓiνi) =

√
2GF m3

W

12π
(49.22)

Γ(W → qiqj) = 3

√
2GF |Vij |2m3

W

12π
(49.23)

Γ(Z → ff) = Nc

√
2GF m3

Z

6π

×
[
(T3 − Qf sin2 θW )2 + (Qf sin2 θW )2

]
. (49.24)

The weak mixing angle is θW . The CKM matrix elements are indicated by Vij and Nc is
3 for qq final states and 1 for leptonic final states.
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The full differential cross section for fifj → (W, Z) → fi′fj′ is given by

dσ

dΩ
=

N
f
c

N i
c
· 1

256π2s
· s2

(s − M2)2 + sΓ2

×
[
(L2 + R2)(L′2 + R′2)(1 + cos2 θ)

+ (L2 − R2)(L′2 − R′2)2 cosθ
]

(49.25)

where M is the mass of the W or Z. The couplings for the W are L =
(8GF m2

W /
√

2)1/2Vij/
√

2; R = 0 where Vij is the corresponding CKM matrix el-
ement, with an analogous expression for L′ and R′. For Z, the couplings are
L = (8GF m2

Z/
√

2)1/2(T3 − sin2 θW Q); R = −(8GF m2
Z/

√
2)1/2 sin2 θW Q, where T3 is the

weak isospin of the initial left-handed fermion and Q is the initial fermion’s electric

charge. The expressions for L′ and R′ are analogous. The color factors N
i,f
c are 3 for

initial or final quarks and 1 for initial or final leptons.

49.4.2. Production of pairs of weak gauge bosons :

The cross section for ff → W+W− is given in term of the couplings of the left-handed
and right-handed fermion f , ℓ = 2(T3 − QxW ), r = −2QxW , where T3 is the third
component of weak isospin for the left-handed f , Q is its electric charge (in units of the
proton charge), and xW = sin2 θW :

dσ

dt
=

2πα2

Ncs2

{[ (
Q +

ℓ + r

4xW

s

s − m2
Z

)2

+

(
ℓ − r

4xW

s

s − m2
Z

)2]
A(s, t, u)

+
1

2xW

(
Q +

ℓ

2xW

s

s − m2
Z

)
(Θ(−Q)I(s, t, u)− Θ(Q)I(s, u, t))

+
1

8x2
W

(Θ(−Q)E(s, t, u) + Θ(Q)E(s, u, t))

}

, (49.26)

where Θ(x) is 1 for x > 0 and 0 for x < 0, and where

A(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
− m2

W

s
+ 3

m4
W

s2

)

+
s

m2
W

− 4,

I(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
− m2

W

2s
− m4

W

st

)
+

s

m2
W

− 2 + 2
m2

W

t
,

E(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
+

m4
W

t2

)
+

s

m2
W

, (49.27)
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6 49. Cross-section formulae for specific processes

and s, t, u are the usual Mandelstam variables with s = (pf + pf )2, t = (pf − pW−)2, u =

(pf − pW+)2. The factor Nc is 3 for quarks and 1 for leptons.

The analogous cross-section for qiqj → W±Z0 is

dσ

dt
=

πα2|Vij |2
6s2x2

W

{(
1

s − m2
W

)2 [(
9 − 8xW

4

) (
ut − m2

W m2
Z

)

+(8xW − 6) s
(
m2

W + m2
Z

)]

+

[
ut − m2

W m2
Z − s(m2

W + m2
Z)

s − m2
W

][
ℓj

t
− ℓi

u

]

+
ut − m2

W m2
Z

4(1 − xW )

[
ℓ2j
t2

+
ℓ2i
u2

]

+
s(m2

W + m2
Z)

2(1 − xW )

ℓiℓj

tu

}

, (49.28)

where ℓi and ℓj are the couplings of the left-handed qi and qj as defined above. The
CKM matrix element between qi and qj is Vij .

The cross section for qiqi → Z0Z0 is

dσ

dt
=

πα2

96

ℓ4i + r4
i

x2
W (1 − x2

W )2s2

[
t

u
+

u

t
+

4m2
Zs

tu
− m4

Z

(
1

t2
+

1

u2

)]

. (49.29)

49.5. Production of Higgs Bosons

49.5.1. Resonant Production :

The Higgs boson of the Standard Model can be produced resonantly in the collisions of
quarks, leptons, W or Z bosons, gluons, or photons. The production cross section is thus
controlled by the partial width of the Higgs boson into the entrance channel and its total
width. The branching fractions for the Standard Model Higgs boson are shown in Fig. 1
of the “Searches for Higgs bosons” review in the Particle Listings section, as a function of
the Higgs boson mass. The partial widths are given by the relations

Γ(H → ff) =
GF m2

fmHNc

4π
√

2

(
1 − 4m2

f/m2
H

)3/2
, (49.30)

Γ(H → W+W−) =
GF m3

HβW

32π
√

2

(
4 − 4aW + 3a2

W

)
, (49.31)

Γ(H → ZZ) =
GF m3

HβZ

64π
√

2

(
4 − 4aZ + 3a2

Z

)
, (49.32)
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49. Cross-section formulae for specific processes 7

where Nc is 3 for quarks and 1 for leptons and where aW = 1 − β2
W = 4m2

W /m2
H and

aZ = 1 − β2
Z = 4m2

Z/m2
H . The decay to two gluons proceeds through quark loops, with

the t quark dominating [2]. Explicitly,

Γ(H → gg) =
α2

sGF m3
H

36π3
√

2

∣∣∣∣∣
∑

q

I(m2
q/m2

H)

∣∣∣∣∣

2

, (49.33)

where I(z) is complex for z < 1/4. For z < 2 × 10−3, |I(z)| is small so the light quarks
contribute negligibly. For mH < 2mt, z > 1/4 and

I(z) = 3

[
2z + 2z(1 − 4z)

(
sin−1 1

2
√

z

)2
]

, (49.34)

which has the limit I(z) → 1 as z → ∞.

49.5.2. Higgs Boson Production in W
∗ and Z

∗ decay :

The Standard Model Higgs boson can be produced in the decay of a virtual W or Z
(“Higgstrahlung”) [3,4]: In particular, if k is the c.m. momentum of the Higgs boson,

σ(qiqj → WH) =
πα2|Vij |2
36 sin4 θW

2k√
s

k2 + 3m2
W

(s − m2
W )2

(49.35)

σ(ff → ZH) =
2πα2(ℓ2f + r2

f )

48Nc sin4 θW cos4 θW

2k√
s

k2 + 3m2
Z

(s − m2
Z)2

, (49.36)

where ℓ and r are defined as above.

49.5.3. W and Z Fusion :

Just as high-energy electrons can be regarded as sources of virtual photon beams, at very
high energies they are sources of virtual W and Z beams. For Higgs boson production,
it is the longitudinal components of the W s and Zs that are important [5]. The
distribution of longitudinal W s carrying a fraction y of the electron’s energy is [6]

f(y) =
g2

16π2

1 − y

y
, (49.37)

where g = e/ sin θW . In the limit s ≫ mH ≫ mW , the partial decay rate is
Γ(H → WLWL) = (g2/64π)(m3

H/m2
W ) and in the equivalent W approximation [7]

σ(e+e− → νeνeH) =
1

16m2
W

(
α

sin2 θW

)3

×
[(

1 +
m2

H

s

)
log

s

m2
H

− 2 + 2
m2

H

s

]
. (49.38)
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8 49. Cross-section formulae for specific processes

There are significant corrections to this relation when mH is not large compared to
mW [8]. For mH = 150 GeV, the estimate is too high by 51% for

√
s = 1000 GeV, 32%

too high at
√

s = 2000 GeV, and 22% too high at
√

s = 4000 GeV. Fusion of ZZ to make
a Higgs boson can be treated similarly. Identical formulae apply for Higgs production in
the collisions of quarks whose charges permit the emission of a W+ and a W−, except
that QCD corrections and CKM matrix elements are required. Even in the absence of
QCD corrections, the fine-structure constant ought to be evaluated at the scale of the
collision, say mW . All quarks contribute to the ZZ fusion process.

49.6. Inclusive hadronic reactions

One-particle inclusive cross sections Ed3σ/d3p for the production of a particle of
momentum p are conveniently expressed in terms of rapidity y (see above) and the
momentum p

T
transverse to the beam direction (in the c.m.):

E
d3σ

d3p
=

d3σ

dφ dy p
T

dp2
T

. (49.39)

In appropriate circumstances, the cross section may be decomposed as a partonic cross
section multiplied by the probabilities of finding partons of the prescribed momenta:

σhadronic =
∑

ij

∫
dx1 dx2 fi(x1) fj(x2) dσ̂partonic , (49.40)

The probability that a parton of type i carries a fraction of the incident particle’s that
lies between x1 and x1 + dx1 is fi(x1)dx1 and similarly for partons in the other incident
particle. The partonic collision is specified by its c.m. energy squared ŝ = x1x2s and the
momentum transfer squared t̂. The final hadronic state is more conveniently specified
by the rapidities y1, y2 of the two jets resulting from the collision and the transverse
momentum pT . The connection between the differentials is

dx1dx2dt̂ = dy1dy2
ŝ

s
dp2

T , (49.41)

so that

d3σ

dy1dy2dp2
T

=
ŝ

s

[
fi(x1)fj(x2)

dσ̂

dt̂
(ŝ, t̂, û) + fi(x2)fj(x1)

dσ̂

dt̂
(ŝ, û, t̂)

]
, (49.42)

where we have taken into account the possibility that the incident parton types might
arise from either incident particle. The second term should be dropped if the types are
identical: i = j.
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49.7. Two-photon processes

In the Weizsäcker-Williams picture, a high-energy electron beam is accompanied by a
spectrum of virtual photons of energies ω and invariant-mass squared q2 = −Q2, for
which the photon number density is

dn =
α

π

[
1 − ω

E
+

ω2

E2
− m2

e ω2

Q2E2

]
dω

ω

dQ2

Q2
, (49.43)

where E is the energy of the electron beam. The cross section for e+e− → e+e−X is
then [9]

dσe+e−→e+e−X(s) = dn1dn2dσγγ→X(W 2), (49.44)

where W 2 = m2
X . Integrating from the lower limit Q2 = m2

e
ω2

i

Ei(Ei − ωi)
to a maximum

Q2 gives

σe+e−→e+e−X(s) =
α2

π2

∫ 1

zth

dz

z

×
[(

ln
Q2

max

zm2
e

− 1

)2

f(z) +
1

3
(ln z)3

]
σγγ→X(zs), (49.45)

where
f(z) =

(
1 + 1

2
z
)2

ln(1/z) − 1
2 (1 − z)(3 + z). (49.46)

The appropriate value of Q2
max depends on the properties of the produced system

X . For production of hadronic systems, Q2
max ≈ m2

ρ, while for lepton-pair production,

Q2 ≈ W 2. For production of a resonance with spin J 6= 1, we have

σe+e−→e+e−R(s) = (2J + 1)
8α2ΓR→γγ

m3
R

×
[

f(m2
R/s)

(

ln
m2

V s

m2
em

2
R

− 1

)2

− 1

3

(

ln
s

M2
R

)3]

, (49.47)

where mV is the mass that enters into the form factor for the γγ → R transition, typically
mρ.
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PART II: PROCESSES BEYOND THE STANDARD MODEL

49.8. Production of supersymmetric particles

In supersymmetric (SUSY) theories (see Supersymmetric Particle Searches in this
Review), every boson has a fermionic superpartner, and every fermion has a bosonic
superpartner. The minimal supersymmetric Standard Model (MSSM) is a direct
supersymmetrization of the Standard Model (SM), although a second Higgs doublet is
needed to avoid triangle anomalies [10]. Under soft SUSY breaking, superpartner masses
are lifted above the SM particle masses. In weak scale SUSY, the superpartners are
invoked to stabilize the weak scale under radiative corrections, so the superpartners are
expected to have masses of order the TeV scale.

49.8.1. Gluino and squark production :

The superpartners of gluons are the color octet, spin−1
2 gluinos (g̃), while each helicity

component of quark flavor has a spin-0 squark partner, e.g. q̃L and q̃R. Third generation
left- and right- squarks are expected to have large mixing, resulting in mass eigenstates
q̃1 and q̃2, with mq̃1 < mq̃2 (here, q denotes any of the SM flavors of quarks and q̃i the
corresponding flavor and type (i = L, R or 1, 2) of squark). Gluino pair production (g̃g̃)
takes place via either glue-glue or quark-antiquark annihilation [11].

The subprocess cross sections are usually presented as differential distributions in the
Mandelstam variables s, t and u. Note that for a 2 → 2 scattering subprocess ab → cd, the
Mandelstam variable s = (pa + pb)

2 = (pc + pd)2, where pa is the 4-momentum of particle
a, and so forth. The variable t = (pc − pa)2, where c and a are taken conventionally to
be the most similar particles in the subprocess. The variable u would then be equal to
(pd − pa)2. Note that since s, t and u are squares of 4-vectors, they are invariants in any
inertial reference frame.

Gluino pair production at hadron colliders is described by:

dσ

dt
(gg → g̃g̃) =

9πα2
s

4s2

{
2(m2

g̃ − t)(m2
g̃ − u)

s2

+
(m2

g̃ − t)(m2
g̃ − u) − 2m2

g̃(m
2
g̃ + t)

(m2
g̃ − t)2

+
(m2

g̃ − t)(m2
g̃ − u) − 2m2

g̃(m2
g̃ + u)

(m2
g̃ − u)2

+
m2

g̃(s − 4m2
g̃)

(m2
g̃ − t)(m2

g̃ − u)

−
(m2

g̃ − t)(m2
g̃ − u) + m2

g̃(u − t)

s(m2
g̃ − t)

−
(m2

g̃ − t)(m2
g̃ − u) + m2

g̃(t − u)

s(m2
g̃ − u)

}
, (49.48)
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where αs is the strong fine structure constant. Also,

dσ

dt
(qq̄ → g̃g̃) =

8πα2
s

9s2





4

3

(
m2

g̃ − t

m2
q̃ − t

)2

+
4

3

(
m2

g̃ − u

m2
q̃ − u

)2

+
3

s2

[
(m2

g̃ − t)2 + (m2
g̃ − u)2 + 2m2

g̃s
]
− 3

[
(m2

g̃ − t)2 + m2
g̃s

]

s(m2
q̃ − t)

− 3

[
(m2

g̃ − u)2 + m2
g̃s

]

s(m2
q̃ − u)

+
1

3

m2
g̃s

(m2
q̃ − t)(m2

q̃ − u)




 . (49.49)

Gluinos can also be produced in association with squarks: g̃q̃i production, where q̃i

represents any of the various types (left-, right- or mixed) and flavors of squarks. The
subprocess cross section is independent of whether the squark is the right-, left- or mixed
type:

dσ

dt
(gq → g̃q̃i) =

πα2
s

24s2

[
16
3 (s2 + (m2

q̃i
− u)2) + 4

3s(m2
q̃i
− u)

]

s(m2
g̃ − t)(m2

q̃i
− u)2

×
(

(m2
g̃ − u)2 + (m2

q̃i
− m2

g̃)2 +
2sm2

g̃(m
2
q̃i
− m2

g̃)

(m2
g̃ − t)

)
.

(49.50)

There are many different subprocesses for production of squark pairs. Since left- and
right- squarks generally have different masses and different decay patterns, we present the
differential cross section for each subprocess of q̃i (i = L, R or 1, 2) separately. (In early
literature, the following formulae were often combined into a single equation which didn’t
differentiate the various squark types.) The result for gg → q̃i

¯̃qi is:

dσ

dt
(gg → q̃i

¯̃qi) =
πα2

s

4s2





1

3

(
m2

q̃ + t

m2
q̃ − t

)2

+
1

3

(
m2

q̃ + u

m2
q̃ − u

)2

+
3

32s2

(
8s(4m2

q̃ − s) + 4(u − t)2
)

+
7

12

− 1

48

(4m2
q̃ − s)2

(m2
q̃ − t)(m2

q̃ − u)

+
3

32

[
(t − u)(4m2

q̃ + 4t − s) − 2(m2
q̃ − u)(6m2

q̃ + 2t − s)
]

s(m2
q̃ − t)

+
3

32

[
(u − t)(4m2

q̃ + 4u − s) − 2(m2
q̃ − t)(6m2

q̃ + 2u − s)
]

s(m2
q̃ − u)
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12 49. Cross-section formulae for specific processes

+
7

96

[
4m2

q̃ + 4t − s
]

m2
q̃ − t

+
7

96

[
4m2

q̃ + 4u − s
]

m2
q̃ − u




 , (49.51)

which has an obvious u ↔ t symmetry.

For qq̄ → q̃i
¯̃qi with the same initial and final state flavors, we have

dσ

dt
(qq̄ → q̃i

¯̃qi) =
2πα2

s

9s2

{
1

(t − m2
g̃)2

+
2

s2
− 2/3

s(t − m2
g̃)

}

×
[
−st − (t − m2

q̃i
)2

]
, (49.52)

while if initial and final state flavors are different (qq̄ → q̃′i
¯̃q′i) we instead have

dσ

dt
(qq̄ → q̃′i¯̃q

′
i) =

4πα2
s

9s4

[
−st − (t − m2

q̃′i
)2

]
. (49.53)

If the two initial state quarks are of different flavors, then we have

dσ

dt
(qq̄′ → q̃i

¯̃q′i) =
2πα2

s

9s2

−st − (t − m2
q̃i

)2

(t − m2
g̃)2

. (49.54)

If the initial quarks are of different flavor and final state squarks are of different type
(i 6= j) then

dσ

dt
(qq̄′ → q̃i

¯̃q′j) =
2πα2

s

9s2

m2
g̃s

(t − m2
g̃)2

. (49.55)

For same-flavor initial state quarks, but final state unlike-type squarks, we also have

dσ

dt
(qq̄ → q̃i

¯̃qj) =
2πα2

s

9s2

m2
g̃s

(t − m2
g̃)2

. (49.56)

There also exist cross sections for quark-quark annihilation to squark pairs. For same
flavor quark-quark annihilation to same flavor/same type final state squarks,

dσ

dt
(qq → q̃iq̃i) =

=
πα2

s

9s2
m2

g̃s

{
1

(t − m2
g̃)2

+
1

(u − m2
g̃)2

− 2/3

(t − m2
g̃)(u − m2

g̃)

}
, (49.57)

while if the final type squarks are different (i 6= j), we have

dσ

dt
(qq → q̃iq̃j) =
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49. Cross-section formulae for specific processes 13

2πα2
s

9s2





[−st − (t − m2

q̃i
)(t − m2

q̃j
)]

(t − m2
g̃)

+
[−su − (u − m2

q̃i
)(u − m2

q̃j
)]

(u − m2
g̃)




 . (49.58)

If initial/final state flavors are different, but final state squark types are the same, then

dσ

dt
(qq′ → q̃iq̃

′
i) =

2πα2
s

9s2

m2
g̃s

(t − m2
g̃)2

. (49.59)

If initial quark flavors are different and final squark types are different, then

dσ

dt
(qq′ → q̃iq̃

′
j) =

2πα2
s

9s2

−st − (t − m2
q̃i

)(t − m2
q̃j

)

(t − m2
g̃)2

. (49.60)

49.8.2. Gluino and squark associated production :

In the MSSM, the charged spin-1
2 winos and higgsinos mix to make chargino states χ±

1

and χ±
2 , with m

χ±

1
< m

χ±

2
. The spin−1

2 neutral bino, wino and higgsino fields mix to

give four neutralino mass eigenstates χ0
1,2,3,4 ordered according to mass. We sometimes

denote the charginos and neutralinos collectively as -inos for notational simplicity

For gluino and squark production in association with charginos and neutralinos [12],
the quark-squark-neutralino couplings* are defined by the interaction Lagrangian terms

L
f̃f χ̃0

i
=

[
iA

f

χ̃0
i

f̃
†
L

¯̃χ0
i PLf + iB

f

χ̃0
i

f̃
†
R

¯̃χ0
i PRf + h.c.

]
, where A

f

χ̃0
i

and B
f

χ̃0
i

are coupling

constants involving gauge couplings, neutralino mixing elements and in the case of third
generation fermions, Yukawa couplings. Their form depends on the conventions used
for setting up the MSSM Lagrangian, and can be found in various reviews [13] and
textbooks [14,15]. PL and PR are the usual left- and right- spinor projection operators
and f denotes any of the SM fermions u, d, e, νe, · · ·. The fermion-sfermion- chargino

couplings have the form L =

[
iAd

χ̃−

i

ũ
†
Lχ̃−

i PLd + iAu
χ̃−

i

d̃
†
Lχ̃c

iPLu + h.c.

]
for u and d quarks,

where the Ad
χ̃−

i

and Au
χ̃−

i

couplings are again convention-dependent, and can be found in

textbooks. The superscript c denotes “charge conjugate spinor”, defined by ψc ≡ Cψ̄T .

The subprocess cross sections for chargino-squark associated production occur via
squark exchange and are given by

dσ

dt
(ūg → χ̃−

i
¯̃
dL) =

αs

24s2
|Au

χ̃−

i

|2ψ(m
d̃L

, m
χ̃−

i
, t), (49.61)

* The couplings Af

χ̃0
i

and Bf

χ̃0
i

are given explicitly in Ref. 15 in Eq. (8.87). Also, the

couplings Ad
χ̃−

i

and Au
χ̃−

i

are given in Eq. (8.93). The couplings Xj
i and Y j

i are given by

Eq. (8.103), while the xi and yi couplings are given in Eq. (8.100). Finally, the couplings
Wij are given in Eq. (8.101).
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14 49. Cross-section formulae for specific processes

dσ

dt
(dg → χ̃−

i ũL) =
αs

24s2
|Ad

χ̃−

i

|2ψ(mũL
, m

χ̃−

i
, t), (49.62)

while neutralino-squark production is given by

dσ

dt
(qg → χ̃0

i q̃) =
αs

24s2

(
|Aq

χ̃0
i

|2 + |Bq

χ̃0
i

|2
)

ψ(mq̃, mχ̃0
i
, t), (49.63)

where

ψ(m1, m2, t) =
s + t − m2

1

2s
− m2

1(m
2
2 − t)

(m2
1 − t)2

+
t(m2

2 − m2
1) + m2

2(s − m2
2 + m2

1)

s(m2
1 − t)

. (49.64)

Here, the variable t is given by the square of “squark-minus-quark” four-momentum. The
neutralino-gluino associated production cross section also occurs via squark exchange and
is given by

dσ

dt
(qq̄ → χ̃0

i g̃) =
αs

18s2

(
|Aq

χ̃0
i

|2 + |Bq

χ̃0
i

|2
) 


(m2

χ̃0
i

− t)(m2
g̃ − t)

(m2
q̃ − t)2

+
(m2

χ̃0
i

− u)(m2
g̃ − u)

(m2
q̃ − u)2

−
2ηiηg̃mg̃mχ̃0

i
s

(m2
q̃ − t)(m2

q̃ − u)



 , (49.65)

where ηi is the sign of the neutralino mass eigenvalue and ηg̃ is the sign of the gluino
mass eigenvalue. We also have chargino-gluino associated production:

dσ

dt
(ūd → χ̃−

i g̃) =
αs

18s2



|Au
χ̃−

i

|2
(m2

χ̃−

i

− t)(m2
g̃ − t)

(m2
d̃L

− t)2

+|Ad
χ̃−

i

|2
(m2

χ̃−

i

− u)(m2
g̃ − u)

(m2
ũL

− u)2
+

2ηg̃Re(Au
χ̃−

i

Ad
χ̃−

i

)mg̃mχ̃i
s

(m2
d̃L

− t)(m2
ũL

− u)



 , (49.66)

where t̂ = (g̃ − d)2 and in the third term one must take the real part of the in general
complex coupling constant product.
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49.8.3. Slepton and sneutrino production :

The subprocess cross section for ℓ̃L
¯̃νℓL

production (ℓ = e or µ) occurs via s-channel W
exchange and is given by

dσ

dt
(dū → ℓ̃L

¯̃νℓL
) =

g4|DW (s)|2
192πs2

(
tu − m2

ℓ̃L
m2

ν̃ℓL

)
, (49.67)

where DW (s) = 1/(s − M2
W + iMW ΓW ) is the W -boson propagator denominator. The

production of τ̃1
¯̃ντ is given as above, but replacing m

ℓ̃L
→ mτ̃1 , mν̃ℓL

→ mν̃τ and

multiplying by an overall factor of cos2 θτ (where θτ is the tau-slepton mixing angle).
Similar substitutions hold for τ̃2

¯̃ντ production, except the overall factor is sin2 θτ .

Table 49.1: The constants αf and βf that appear in in the SM neutral current
Lagrangian. Here t ≡ tan θW and c ≡ cot θW .

f qf αf βf

ℓ −1
1

4
(3t − c)

1

4
(t + c)

νℓ 0
1

4
(t + c) −1

4
(t + c)

u
2

3
− 5

12
t +

1

4
c −1

4
(t + c)

d −1

3

1

12
t − 1

4
c

1

4
(t + c)

The subprocess cross section for ℓ̃L
¯̃
ℓL production occurs via s-channel γ and Z exchange,

and depends on the neutral current interaction, with fermion couplings to γ and Z0 given
by Lneutral = −eqf f̄γµfAµ + ef̄γµ(αf + βfγ5)fZµ (with values of qf , αf , and βf given
in Table 49.1.

The subprocess cross section is given by

dσ

dt
(qq̄ → ℓ̃L

¯̃
ℓL) =

e4

24πs2

(
tu − m4

ℓ̃L

)
×

{
q2
ℓ q2

q

s2
+ (αℓ − βℓ)

2(α2
q + β2

q )|DZ(s)|2

+
2qℓqqαq(αℓ − βℓ)(s − M2

Z)

s
|DZ(s)|2

}
, (49.68)
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16 49. Cross-section formulae for specific processes

where DZ(s) = 1/(s−M2
Z + iMZΓZ). The cross section for sneutrino production is given

by the same formula, but with αℓ, βℓ, qℓ and m
ℓ̃L

replaced by αν , βν , 0 and mν̃L
,

respectively. The cross section for τ̃1
¯̃τ1 production is obtained by replacing m

ℓ̃L
→ mτ̃1

and βℓ → βℓ cos 2θτ . The cross section for ℓ̃R
¯̃
ℓR production is given by substituting

αℓ − βℓ → αℓ + βℓ and m
ℓ̃L

→ m
ℓ̃R

in the equation above. The cross section for τ̃2
¯̃τ2

production is obtained from the formula for ℓ̃R
¯̃
ℓR production by replacing m

ℓ̃R
→ mτ̃2

and βℓ → βℓ cos 2θτ .

Finally, the cross section for τ̃1
¯̃τ2 production occurs only via Z exchange, and is given

by
dσ

dt
(qq̄ → τ̃1

¯̃τ2) =
dσ

dt
(qq̄ → ¯̃τ1τ̃2) =

e4

24πs2
(α2

q + β2
q )β2

ℓ sin2 2θτ |DZ(s)|2(ut − m2
τ̃1

m2
τ̃2

). (49.69)

49.8.4. Chargino and neutralino pair production :

49.8.4.1. χ̃−
i χ̃0

j production:

The subprocess cross section for dū → χ̃−
i χ̃0

j depends on Lagrangian couplings

LWūd = − g√
2
ūγµPLdW+µ +h.c., L

Wχ̃−

i
χ̃0

j
= −g(−i)θj χ̃−

i[X
j
i +Y

j
i γ5]γµχ̃0

jW
−µ +h.c.,

L
qq̃χ̃−

i
= iAd

χ̃−

i

ũ
†
Lχ̃−

i PLd + iAu
χ̃−

i

d̃
†
Lχ̃c

iPLu + h.c. and Lqq̃χ̃0
j

= iA
q

χ̃0
j

q̃
†
Lχ̃0

jPLq + h.c..

Contributing diagrams include W exchange and also d̃L and ũL squark exchange. The Xj
i

and Y
j
i couplings are new, and again convention-dependent: the cross section formulae

works if the interaction Lagrangian is written in the above form, so that the couplings
can be suitably extracted. The term θj = 0 (1) if mχ̃0

j
> 0 (< 0); it comes about because

the neutralino field must be re-defined by a −iγ5 transformation if its mass eigenvalue
is negative [15]. The subprocess cross section is given in terms of dot products of four
momenta, where particle labels are used to denote their four-momenta; note that all
mass terms in the cross section formulae are positive definite, so that the signs of mass
eigenstates have been absorbed into the Lagrangian couplings, as for instance in Ref.
[15]. We then have

dσ

dt
(du → χ̃−

i χ̃0
j ) =

1

192πs2
[
TW + T

d̃L
+ TũL

+ T
Wd̃L

+ TWũL
+ T

d̃LũL

]
(49.70)

where

TW = 8g4|DW (s)|2
{
[X

j2
i + Y

j2
i ](χ̃0

j · dχ̃−
i · u + χ̃0

j · uχ̃−
i · d)

+ 2(X
j
i Y

j
i )(χ̃0

j · dχ̃−
i · u − χ̃0

j · uχ̃−
i · d) + [X

j2
i − Y

j2
i ]m

χ̃−

i
mχ̃0

j
d · u

}
,

(49.71)
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T
d̃L

=

4|Au
χ̃−

i

|2|Ad
χ̃0

j

|2

[(χ̃−
i − u)2 − m2

d̃L
]2

d · χ̃0
j χ̃

−
i · u, (49.72)

TũL
=

4|Ad
χ̃−

i

|2|Au
χ̃0

j

|2

[(χ̃0
j − u)2 − m2

ũL
]2

u · χ̃0
j χ̃

−
i · d (49.73)

T
Wd̃L

=

−
√

2g2Re[Ad∗
χ̃0

j

Au
χ̃−

i

(−i)θj ](s − M2
W )|DW (s)|2

(χ̃−
i − u)2 − m2

d̃L

×
{

8(X
j
i + Y

j
i )χ̃0

j · du · χ̃−
i + 4(X

j
i − Y

j
i )m

χ̃−

i
mχ̃0

j
d · u

}
(49.74)

TWũL
=

√
2g2Re[Ad∗

χ̃−

i

Au
χ̃0

j

(−i)θj ](s − M2
W )|DW (s)|2

(χ̃0
j − u)2 − m2

ũL

×
{

8(X
j
i − Y

j
i )χ̃0

j · ud · χ̃−
i + 4(X

j
i + Y

j
i )m

χ̃−

i
mχ̃0

j
d · u

}
(49.75)

and

T
d̃LũL

= −
4Re[Ad

χ̃0
j

Au∗
χ̃−

i

Ad∗
χ̃−

i

Au
χ̃0

j

]m
χ̃−

i
mχ̃0

j
d · u

[(χ̃−
i − u)2 − m2

d̃L
][(χ̃0

j − u)2 − m2
ũL

]
. (49.76)

49.8.4.2. Chargino pair production:

The subprocess cross section for dd̄ → χ̃−
i χ̃+

i (i = 1, 2) depends on Lagrangian

couplings L = eχ̃−
i γµχ̃−

i Aµ−e cot θW χ̃−
i γµ(xi−yiγ5)χ̃

−
i Zµ and also L ∋ iAd

χ̃−

i

ũ
†
Lχ̃−

i PLd+

iAu
χ̃−

i

d̃
†
Lχ̃−c

i PLu + h.c.. Contributing diagrams include s-channel γ, Z0 exchange and

t-channel ũL exchange [16,17]. The couplings xi and yi are again new and as usual
convention-dependent.

The subprocess cross section is given by

dσ

dt
(dd → χ̃−

i χ̃+
i ) =

1

192πs2

[
Tγ + TZ + TũL

+ TγZ + TγũL
+ TZũL

]
(49.77)

where

Tγ =
32e4q2

d

s2

[
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i + m2

χ̃−

i

d · d
]

(49.78)
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18 49. Cross-section formulae for specific processes

TZ = 32e4 cot2 θW |DZ(s)|2
{

(α2
d + β2

d)(x2
i + y2

i )

[
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i + m2

χ̃−

i

d · d
]

∓4αdβdxiyi
[
d · χ̃+

i d · χ̃−
i − d · χ̃−

i d · χ̃+
i

]
−2y2

i (α2
d + β2

d)m2
χ̃−

i

d · d
}

, (49.79)

TũL
=

4|Ad
χ̃−

i

|4

[(d − χ̃−
i )2 − m2

ũL
]2

d · χ̃−
i d · χ̃+

i (49.80)

TγZ =
64e4 cot θW qd(s − M2

Z)|DZ(s)|2
s

×
{

αdxi

(
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i + m2

χ̃−

i

d · d
)

±βdyi
(
d · χ̃−

i d · χ̃+
i − d · χ̃+

i d · χ̃−
i

)
}

(49.81)

TγũL
= ∓8e2qd

s

|Ad
χ̃−

i

|2

[(d − χ̃−
i )2 − m2

ũL
]

{
2d · χ̃+

i d · χ̃−
i + m2

χ̃−

i

d · d
}

(49.82)

and

TZũL
= ∓8e2 cot θW |DZ(s)|2

|Ad
χ̃−

i

|2(s − M2
Z)

[(d − χ̃−
i )2 − m2

ũL
]
(αd − βd)

×
{

2(xi ∓ yi)d · χ̃−
i d · χ̃+

i + m2
χ̃−

i

(xi ± yi)d · d
}

(49.83)

using the upper of the sign choices.

The cross section for uu → χ̃+
i χ̃−

i can be obtained from the above by replacing

αd → αu, βd → βu, qd → qu, ũL → d̃L, Ad
χ̃−

i

→ Au
χ̃−

i

, d → u, d → u and adopting the

lower of the sign choices everywhere.

The cross section for qq̄ → χ̃−
1 χ̃+

2 , χ̃+
1 χ̃−

2 can occur via Z and q̃L exchange. It is

usually much smaller than χ̃−
1,2χ̃

+
1,2 production, so the cross section will not be presented

here. It can be found in Appendix A of Ref. 15.
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49.8.4.3. Neutralino pair production:

Neutralino pair production via qq̄ fusion takes place via s-channel Z exchange plus t-
and u-channel left- and right- squark exchange (5 diagrams) [17,18]. The Lagrangian
couplings (see previous footnote*) needed include terms given above plus terms of the

form L = Wij χ̃0
iγµ(γ5)

θi+θj+1χ̃0
jZ

µ. The couplings Wij depend only on the higgsino
components of the neutralinos i and j. The subprocess cross section is given by:

dσ

dt
(qq̄ → χ̃0

i χ̃
0
j ) =

1

192πs2

[
TZ + Tq̃L

+ Tq̃R
+ TZq̃L

+ TZq̃R

]
(49.84)

where
TZ = 128e2|Wij |2(α2

q + β2
q )|DZ(s)|2

[
q · χ̃0

i q̄ · χ̃0
j + q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]
, (49.85)

Tq̃L
= 4|Aq

χ̃0
i

|2|Aq

χ̃0
j

|2
{

q · χ̃0
i q̄ · χ̃0

j

[(χ̃0
i − q)2 − m2

q̃L
]2

+
q · χ̃0

j q̄ · χ̃0
i

[(χ̃0
j − q)2 − m2

q̃L
]2

− ηiηj

mχ̃0
i
mχ̃0

j
q · q̄

[(χ̃0
i − q)2 − m2

q̃L
][(χ̃0

j − q)2 − m2
q̃L

]

}
(49.86)

Tq̃R
= 4|Bq

χ̃0
i

|2|Bq

χ̃0
j

|2
{

q · χ̃0
i q̄ · χ̃0

j

[(χ̃0
i − q)2 − m2

q̃R
]2

+
q · χ̃0

j q̄ · χ̃0
i

[(χ̃0
j − q)2 − m2

q̃R
]2

− ηiηj

mχ̃0
i
mχ̃0

j
q · q̄

[(χ̃0
i − q)2 − m2

q̃R
][(χ̃0

j − q)2 − m2
q̃R

]

}
(49.87)

TZq̃L
= 16e(αq − βq)(s − M2

Z)|DZ(s)|2

{ Re(WijA
q∗
χ̃0

i

A
q

χ̃0
j

)

[(χ̃0
i − q)2 − m2

q̃L
]

[
2q · χ̃0

i q̄ · χ̃0
j − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]

+ηiηj

Re(WijA
q

χ̃0
i

A
q∗
χ̃0

j

)

[(χ̃0
j − q)2 − m2

q̃L
]

[
2q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]}
(49.88)

TZq̃R
= 16e(αq + βq)(s − M2

Z)|DZ(s)|2

{ Re(WijB
q∗
χ̃0

i

B
q

χ̃0
j

)

[(χ̃0
i − q)2 − m2

q̃R
]

[
2q · χ̃0

i q̄ · χ̃0
j − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]
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−
Re(WijB

q

χ̃0
i

B
q∗
χ̃0

j

)

[(χ̃0
j − q)2 − m2

q̃R
]

[
2q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]}

. (49.89)

As before, ηi = ±1 corresponding to whether the neutralino mass eigenvalue is positive
or negative. When i = j in the above formula, one must remember to integrate over just
2π steradians of solid angle to avoid double counting in the total cross section.

49.9. Universal extra dimensions

In the Universal Extra Dimension (UED) model of Ref. [19] (see Ref. [20] for a review
of models with extra spacetime dimensions), the Standard Model is embedded in a five
dimensional theory, where the fifth dimension is compactified on an S1/Z2 orbifold. Each
SM chirality state is then the zero mode of an infinite tower of Kaluza-Klein excitations
labelled by n = 0 − ∞. A KK parity is usually assumed to hold, where each state is
assigned KK-parity P = (−1)n. If the compactification scale is around a TeV, then the
n = 1 (or even higher) KK modes may be accessible to collider searches.

Of interest for hadron colliders are the production of massive n ≥ 1 quark or gluon
pairs. These production cross sections have been calculated in Ref. [21,22]. We list
here results for the n = 1 case only with M1 = 1/R (R is the compactification radius)
and s, t and u are the usual Mandelstam variables; more general formulae can be found
in Ref. [22]. The superscript ∗ stands for any KK excited state, while • stands for left
chirality states and ◦ stands for right chirality states.

dσ

dt
=

1

16πs2
T (49.90)

where

T (qq̄ → g∗g∗) =
2g4

s

27

[
M2

1

(
− 4s3

t
′2u

′2
+

57s

t′u′
− 108

s

)

+
20s2

t′u′
− 93 +

108t′u′

s2

]
(49.91)

and
T (gg → g∗g∗) =

9g4
s

27

[
3M4

1
s2 + t

′2 + u
′2

t
′2u

′2
− 3M2

1
s2 + t

′2 + u
′2

st′u′
+ 1

+
(s2 + t

′2 + u
′2)3

4s2t
′2u

′2
− t′u′

s2

]
(49.92)

where t′ = t − M2
1 and u′ = u − M2

1 .

Also,

T (qq̄ → q∗
′

1 q̄∗
′

1 ) =
4g4

s

9

[
2M2

1

s
+

t
′2 + u

′2

s2

]
,
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T (qq̄ → q∗1 q̄∗1) =
g4
2

9

[
2M2

1

(
4

s
+

s

t
′2

− 1

t′

)

+
23

6
+

2s2

t
′2

+
8s

3t′
+

6t′

s
+

8t
′2

s2

]

,

T (qq → q∗1q∗1) =
g4
s

27

[
M2

1

(
6

t′

u
′2

+ 6
u′

t
′2

− s

t′u′

)

+2

(
3

t
′2

u
′2

+ 3
u
′2

t
′2

+ 4
s2

t′u′
− 5

)]
,

T (gg → q∗1 q̄∗1) = g4
s

[
M4

1
−4

t′u′

(
s2

6t′u′
− 3

8

)

+M2
1

4

s

(
s2

6t′u′
− 3

8

)
+

s2

6t′u′
− 17

24
+

3t′u′

4s2

]
,

T (gq → g∗q∗1) =
−g4

s

3

[
5s2

12t
′2

+
s3

t
′2u′

+
11su′

6t
′2

+
5u

′2

12t
′2

+
u
′3

st
′2

]

,

T (qq̄′ → q∗1 q̄∗
′

1 ) =
g4
s

18

[
4M4

1
s

t
′2

+ 5 + 4
s2

t
′2

+ 8
s

t′

]
,

T (qq′ → q∗1q∗
′

1 ) =
2g4

s

9

[
−M2

1
s

t
′2

+
1

4
+

s2

t
′2

]
,

T (qq → q•1q◦1) =
g4
s

9

[
M2

1

(
2s3

t
′2u

′2
− 4s

t′u′

)
+ 2

s4

t
′2u

′2
− 8

s2

t′u′
+ 5

]
,

T (qq̄′ → q•1 q̄
′◦
1 ) =

g4
s

9

[
2M2

1

(
1

t′
+

u′

t
′2

)
+

5

2
+

4u′

t′
+

2u
′2

t
′2

]
,

and

T (qq′ → q•1q
′◦
1 ) =

g4
s

9

[

−2M2
1

(
1

t′
+

u′

t
′2

)
+

1

2
+

2u
′2

t
′2

]

.
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49.10. Large extra dimensions

In the ADD theory [23] with large extra dimensions (LED), the SM particles are
confined to a 3-brane, while gravity propagates in the bulk. It is assumed that the n
extra dimensions are compactified on an n-dimensional torus of volume (2πr)n, so that
the fundamental 4 + n dimensional Planck scale M∗ is related to the usual 4-dimensional
Planck scale MP l by M2

P l = Mn+2
∗ (2πr)n. If M∗ ∼ 1 TeV, then the MW −MP l hierarchy

problem is just due to gravity propagating in the large extra dimensions.

In these theories, the KK-excited graviton states Gn
µν for n = 1 −∞ can be produced

at collider experiments. The graviton couplings to matter are suppressed by 1/MP l,
so that graviton emission cross sections dσ/dt ∼ 1/M2

P l. However, the mass splittings
between the excited graviton states can be tiny, so the graviton eigenstates are usually
approximated by a continuum distribution. A summation (integration) over all allowed
graviton emissions ends up cancelling the 1/M2

P l factor, so that observable cross section
rates can be attained. Some of the fundamental production formulae for a KK graviton
(denoted G) of mass m at hadron colliders include the subprocesses

dσm

dt
(f f̄ → γG) =

αQ2
f

16Nf

1

sM2
P l

F1(
t

s
,
m2

s
), (49.93)

where Qf is the charge of fermion f and Nf is the number of QCD colors of f . Also,

dσm

dt
(qq̄ → gG) =

αs

36

1

sM2
P l

F1(
t

s
,
m2

s
), (49.94)

dσm

dt
(qg → qG) =

αs

96

1

sM2
P l

F2(
t

s
,
m2

s
), (49.95)

dσm

dt
(gg → gG) =

3αs

16

1

sM2
P l

F3(
t

s
,
m2

s
), (49.96)

where

F1(x, y) =
1

x(y − 1 − x)

[
−4x(1 + x)(1 + 2x + 2x2)+

y(1 + 6x + 18x2 + 16x3) − 6y2x(1 + 2x) + y3(1 + 4x)
]

(49.97)

F2(x, y) = −(y − 1 − x)F1

(
x

y − 1 − x
,

y

y − 1 − x

)
(49.98)

and

F3(x, y) =
1

x(y − 1 − x)

[
1 + 2x + 3x2 + 2x3 + x4

−2y(1 + x3) + 3y2(1 + x2) − 2y3(1 + x) + y4
]
. (49.99)
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These formulae must then be multiplied by the graviton density of states formula

dN = Sn−1
M2

P l

Mn+2
∗

mn−1dm to gain the cross section

d2σ

dtdm
= Sn−1

M2
P l

Mn+2
∗

mn−1 dσm

dt
(49.100)

where Sn =
(2π)n/2

Γ(n/2)
is the surface area of an n-dimensional sphere of unit radius.

Virtual graviton processes can also be searched for at colliders. For instance, in Ref.
[24] the cross section for Drell-Yan production of lepton pairs via gluon fusion was
calculated, where it is found that, in the center-of-mass system

dσ

dz
(gg → ℓ+ℓ−) =

λ2s3

64πM8∗
(1 − z2)(1 + z2) (49.101)

where z = cos θ and λ is a model-dependent coupling constant ∼ 1. Formulae for
Drell-Yan production via qq̄ fusion can also be found in Refs. [24,25].

49.11. Warped extra dimensions

In the Randall-Sundrum model [26] of warped extra dimensions, the arena for physics
is a 5-d anti-deSitter (AdS5) spacetime, for which a non-factorizable metric exists with a

metric warp factor e−2σ(φ). It is assumed that two opposite tension 3-branes exist within
AdS5 at the two ends of an S1/Z2 orbifold parametrized by co-ordinate φ which runs
from 0 − π. The 4-D solution of the Einstein equations yields σ(φ) = krc|φ|, where rc

is the compactification radius of the extra dimension and k ∼ MP l. The 4-D effective

action allows one to identify M
2
P l =

M3

k
(1 − e−2krcπ), where M is the 5-D Planck scale.

Physical particles on the TeV scale (SM) brane have mass m = e−krcπm0, where m0 is a
fundamental mass of order the Planck scale. Thus, the weak scale-Planck scale hierarchy
occurs due to the existence of the exponential warp factor if krc ∼ 12.

In the simplest versions of the RS model, the TeV-scale brane contains only SM
particles plus a tower of KK gravitons. The RS gravitons have mass mn = kxne−krcπ ,
where the xi are roots of Bessel functions J1(xn) = 0, with x1 ≃ 3.83, x2 ≃ 7.02
etc. While the RS zero-mode graviton couplings suppressed by 1/MP l and are thus
inconsequential for collider searches, the n = 1 and higher modes have couplings
suppressed instead by Λπ = e−krcπMP l ∼ TeV . The n = 1 RS graviton should have
width Γ1 = ρm1x

2
1(k/MP l)

2, where ρ is a constant depending on how many decay modes
are open. The formulae for dilepton production via virtual RS graviton exchange can be
gained from the above formulae for the ADD scenario via the replacement [27]

λ

M4∗
→ i2

8Λ2
π

∞∑

n=1

1

s − m2
n + imnΓn

. (49.102)
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